Intelenjensi semu

Selamat datang di blog saya 😉
Pada kesempatan ini saya ingin share informasi tentang Matakuliah Intelegensi semu 😀 smoga bermanfaat 😉

– Adversial Search
apa itu adversial search? adversial search adalah algoritma pencarian untuk memeriksa masalah yang timbul ketika kita mencoba untuk merencanakan suatu langkah ke depan tetapi ada player atau pihak lain berencana melawan cara kita, bisa juga digunakan dalam permainan dimana player mencoba untuk mendapatkan nilai / score tertinggi, namun di tentang oleh pemain lain (bisa berupa AI/komputer yg menjalankan / user lain yang menjalankan)

biasanya cara ini digunakan dalam permainan reversi, catur, go, tic tac toe, dan masih banyak lainnya

contoh Algoritma yang biasa digunakan: MiniMax, Alpha–beta pruning.
Algoritma yang biasa di gunakan adalah , MiniMax dan Alpha-beta pruning.

-Constraint Satisfaction Problems

Constraint Satisfaction Problems adalah metode yang paling mendekati atau sesuai dengan keinginan kita. Algoritma pencarian jenis ini, akan mencari solusi dengan cara memberikan berbagai alternatif pilihan dan tidak harus berurutan.

Komponen dari Constraint Satisfaction Problem terbagi atas 3 yaitu :

  1. Variabel merupakan penampung yang dapat diisi berbagai nilai.
  2. Domain merupakan kumpulan nilai legal yang dapat diisi ke variable.
  3. Constraint merupakan suatu aturan yang ditentukan untuk mengatur nilai boleh diisikan ke variable atau kombonasi variable.

Constraint dari Constraint Satisfaction Problem terbagi atas 2 kategori yaitu :

  • Hard Constraint adalah batasan yang harus dipenuhi dan tidak boleh dilanggar dalam pembuatan penyelasaian masalah.
  • Soft Constraint adalah batasan tambahan yang biasanya merupakan sebuah permintaan.

Dalam beberapa masalah yang lebih kompleks, metode Constraint Satisfaction Problem ini bisa dipadukan dengan algoritma lainnya seperti :

  • Algoritma Genetika
  • Backtracking
  • Forward Checking
  • Constraint Propagation
  • Arc and Path Consistency
  • Variable and Value Ordering
  • Hill Climbing

Contohnya : Cryptarithmetic,  Map Coloring,  Backtracking  Search

-Apa itu Logika Ropositional?

Propositional logic merupakan salah satu bentuk (bahasa) representasi logika yang paling tua dan paling sederhana. Dengan cara ini beberapa fakta dapat digambarkan dan dimanipulasi dengan menggunakan aturan-aturan aljabar Boolean.
biasanya bentuk bahasa ini bisa direpresentatifkan menggunakan kalimat maupun simbol

Contoh :

p : Ivan mau bermain drum

q : Lagunya bagus

premis 1 : q -> p

premis 2 : ~q

Kesimpulan : ~p

” Jika Lagunya bagus maka Ivan mau bermain drum” namun di premis 2 ” Lagunya tidak bagus ” Kesimpulannya  Ivan tidak mau bermain drum.

Berikut ada juga beberapa contoh coding Algoritma A & Algoritma A* (A Star) dalam Bahasa C++

Algoritma A*

#include <iostream>
#include <iomanip>
#include <queue>
#include <string>
#include <math.h>
#include <ctime>
using namespace std;

const int n=60; // horizontal size of the map
const int m=60; // vertical size size of the map
static int map[n][m];
static int closed_nodes_map[n][m]; // map of closed (tried-out) nodes
static int open_nodes_map[n][m]; // map of open (not-yet-tried) nodes
static int dir_map[n][m]; // map of directions
const int dir=8; // number of possible directions to go at any position
// if dir==4
//static int dx[dir]={1, 0, -1, 0};
//static int dy[dir]={0, 1, 0, -1};
// if dir==8
static int dx[dir]={1, 1, 0, -1, -1, -1, 0, 1};
static int dy[dir]={0, 1, 1, 1, 0, -1, -1, -1};

class node
{
    // current position
    int xPos;
    int yPos;
    // total distance already travelled to reach the node
    int level;
    // priority=level+remaining distance estimate
    int priority;  // smaller: higher priority

    public:
        node(int xp, int yp, int d, int p) 
            {xPos=xp; yPos=yp; level=d; priority=p;}

        int getxPos() const {return xPos;}
        int getyPos() const {return yPos;}
        int getLevel() const {return level;}
        int getPriority() const {return priority;}

        void updatePriority(const int & xDest, const int & yDest)
        {
             priority=level+estimate(xDest, yDest)*10; //A*
        }

        // give better priority to going strait instead of diagonally
        void nextLevel(const int & i) // i: direction
        {
             level+=(dir==8?(i%2==0?10:14):10);
        }

        // Estimation function for the remaining distance to the goal.
        const int & estimate(const int & xDest, const int & yDest) const
        {
            static int xd, yd, d;
            xd=xDest-xPos;
            yd=yDest-yPos;         

            // Euclidian Distance
            d=static_cast<int>(sqrt(xd*xd+yd*yd));

            // Manhattan distance
            //d=abs(xd)+abs(yd);

            // Chebyshev distance
            //d=max(abs(xd), abs(yd));

            return(d);
        }
};

// Determine priority (in the priority queue)
bool operator<(const node & a, const node & b)
{
  return a.getPriority() > b.getPriority();
}

// A-star algorithm.
// The route returned is a string of direction digits.
string pathFind( const int & xStart, const int & yStart, 
                 const int & xFinish, const int & yFinish )
{
    static priority_queue<node> pq[2]; // list of open (not-yet-tried) nodes
    static int pqi; // pq index
    static node* n0;
    static node* m0;
    static int i, j, x, y, xdx, ydy;
    static char c;
    pqi=0;

    // reset the node maps
    for(y=0;y<m;y++)
    {
        for(x=0;x<n;x++)
        {
            closed_nodes_map[x][y]=0;
            open_nodes_map[x][y]=0;
        }
    }

    // create the start node and push into list of open nodes
    n0=new node(xStart, yStart, 0, 0);
    n0->updatePriority(xFinish, yFinish);
    pq[pqi].push(*n0);
    open_nodes_map[x][y]=n0->getPriority(); // mark it on the open nodes map

    // A* search
    while(!pq[pqi].empty())
    {
        // get the current node w/ the highest priority
        // from the list of open nodes
        n0=new node( pq[pqi].top().getxPos(), pq[pqi].top().getyPos(), 
                     pq[pqi].top().getLevel(), pq[pqi].top().getPriority());

        x=n0->getxPos(); y=n0->getyPos();

        pq[pqi].pop(); // remove the node from the open list
        open_nodes_map[x][y]=0;
        // mark it on the closed nodes map
        closed_nodes_map[x][y]=1;

        // quit searching when the goal state is reached
        //if((*n0).estimate(xFinish, yFinish) == 0)
        if(x==xFinish && y==yFinish) 
        {
            // generate the path from finish to start
            // by following the directions
            string path="";
            while(!(x==xStart && y==yStart))
            {
                j=dir_map[x][y];
                c='0'+(j+dir/2)%dir;
                path=c+path;
                x+=dx[j];
                y+=dy[j];
            }

            // garbage collection
            delete n0;
            // empty the leftover nodes
            while(!pq[pqi].empty()) pq[pqi].pop();           
            return path;
        }

        // generate moves (child nodes) in all possible directions
        for(i=0;i<dir;i++)
        {
            xdx=x+dx[i]; ydy=y+dy[i];

            if(!(xdx<0 || xdx>n-1 || ydy<0 || ydy>m-1 || map[xdx][ydy]==1 
                || closed_nodes_map[xdx][ydy]==1))
            {
                // generate a child node
                m0=new node( xdx, ydy, n0->getLevel(), 
                             n0->getPriority());
                m0->nextLevel(i);
                m0->updatePriority(xFinish, yFinish);

                // if it is not in the open list then add into that
                if(open_nodes_map[xdx][ydy]==0)
                {
                    open_nodes_map[xdx][ydy]=m0->getPriority();
                    pq[pqi].push(*m0);
                    // mark its parent node direction
                    dir_map[xdx][ydy]=(i+dir/2)%dir;
                }
                else if(open_nodes_map[xdx][ydy]>m0->getPriority())
                {
                    // update the priority info
                    open_nodes_map[xdx][ydy]=m0->getPriority();
                    // update the parent direction info
                    dir_map[xdx][ydy]=(i+dir/2)%dir;

                    // replace the node
                    // by emptying one pq to the other one
                    // except the node to be replaced will be ignored
                    // and the new node will be pushed in instead
                    while(!(pq[pqi].top().getxPos()==xdx && 
                           pq[pqi].top().getyPos()==ydy))
                    {                
                        pq[1-pqi].push(pq[pqi].top());
                        pq[pqi].pop();       
                    }
                    pq[pqi].pop(); // remove the wanted node

                    // empty the larger size pq to the smaller one
                    if(pq[pqi].size()>pq[1-pqi].size()) pqi=1-pqi;
                    while(!pq[pqi].empty())
                    {                
                        pq[1-pqi].push(pq[pqi].top());
                        pq[pqi].pop();       
                    }
                    pqi=1-pqi;
                    pq[pqi].push(*m0); // add the better node instead
                }
                else delete m0; // garbage collection
            }
        }
        delete n0; // garbage collection
    }
    return ""; // no route found
}

int main()
{
    srand(time(NULL));

    // create empty map
    for(int y=0;y<m;y++)
    {
        for(int x=0;x<n;x++) map[x][y]=0;
    }

    // fillout the map matrix with a '+' pattern
    for(int x=n/8;x<n*7/8;x++)
    {
        map[x][m/2]=1;
    }
    for(int y=m/8;y<m*7/8;y++)
    {
        map[n/2][y]=1;
    }

    // randomly select start and finish locations
    int xA, yA, xB, yB;
    switch(rand()%8)
    {
        case 0: xA=0;yA=0;xB=n-1;yB=m-1; break;
        case 1: xA=0;yA=m-1;xB=n-1;yB=0; break;
        case 2: xA=n/2-1;yA=m/2-1;xB=n/2+1;yB=m/2+1; break;
        case 3: xA=n/2-1;yA=m/2+1;xB=n/2+1;yB=m/2-1; break;
        case 4: xA=n/2-1;yA=0;xB=n/2+1;yB=m-1; break;
        case 5: xA=n/2+1;yA=m-1;xB=n/2-1;yB=0; break;
        case 6: xA=0;yA=m/2-1;xB=n-1;yB=m/2+1; break;
        case 7: xA=n-1;yA=m/2+1;xB=0;yB=m/2-1; break;
    }

    cout<<"Map Size (X,Y): "<<n<<","<<m<<endl;
    cout<<"Start: "<<xA<<","<<yA<<endl;
    cout<<"Finish: "<<xB<<","<<yB<<endl;
    // get the route
    clock_t start = clock();
    string route=pathFind(xA, yA, xB, yB);
    if(route=="") cout<<"An empty route generated!"<<endl;
    clock_t end = clock();
    double time_elapsed = double(end - start);
    cout<<"Time to calculate the route (ms): "<<time_elapsed<<endl;
    cout<<"Route:"<<endl;
    cout<<route<<endl<<endl;

    // follow the route on the map and display it 
    if(route.length()>0)
    {
        int j; char c;
        int x=xA;
        int y=yA;
        map[x][y]=2;
        for(int i=0;i<route.length();i++)
        {
            c =route.at(i);
            j=atoi(&c); 
            x=x+dx[j];
            y=y+dy[j];
            map[x][y]=3;
        }
        map[x][y]=4;

        // display the map with the route
        for(int y=0;y<m;y++)
        {
            for(int x=0;x<n;x++)
                if(map[x][y]==0)
                    cout<<".";
                else if(map[x][y]==1)
                    cout<<"O"; //obstacle
                else if(map[x][y]==2)
                    cout<<"S"; //start
                else if(map[x][y]==3)
                    cout<<"R"; //route
                else if(map[x][y]==4)
                    cout<<"F"; //finish
            cout<<endl;
        }
    }
    getchar(); // wait for a (Enter) keypress  
    return(0);
}
This entry was posted in Uncategorized. Bookmark the permalink.

One Response to Intelenjensi semu

Leave a Reply

Your email address will not be published. Required fields are marked *